18721334000
应用统计方法计算尺寸链_Minitab软件应用-刘振照
发布时间: 2025-01-05 09:53:57 |   作者: 爱游戏入口

  图三 4.2 生成随机尺寸数据 选择计算-随机数据-正态,见图二,弹出正态分布对话框,见图四,在要生成的 数据行数输入需要仿真的数据个数,通常情况下,生成的数据越多,仿真结果精度越高 (该数据个数可想象为实际零件个数,如图中所示 I 尺寸为 10000 个,能想象为实际 有 10000 个零件,其尺寸 I 的分布为均值 10,标准差为 0.0167 的正态分布) 。其它尺寸

  2 应用实例 本文以图一所示一款继电器为分析对象,对其衔铁行程的尺寸链及公差进行了分 析。该款继电器是一款拍合式大触点间隙继电器。 3 准备工作 3.1 绘制尺寸链,确定闭环的尺寸、公差及开环(衔铁行程)的上下限 按照极大极小值法绘制尺寸链,确定闭环的尺寸、公差,同时,需要确认开环(衔 铁行程) 的上下限。 在该继电器设计中, 设计师设计该继电器衔铁行程为 (0.85, 0.95) 。 注意,需要将图纸标注尺寸转化为对称公差。形成如表一所示数据收集表。其中 sigma_level 代表在当前公差带范围内尺寸保证能力,3σ水平是在尺寸无偏情况下代表 有 99.73 的合格率。在 1.5σ偏移的情况下有 93.3 的合格率。

  是指使用随机数或更常见的伪随机数来解决很多计算问题的方法蒙特卡罗模拟法的基本思想是当所求问题的解是某个事件的概率或者是某个随机变量的数学期望或者是与概率数学期望有关的量时通过某种试验的方法得出该事件发生的频率或者该随机变量若干个具体观察值的算术平均值通过它得到问题的用蒙特卡罗模拟法进行装配尺寸链公差分析就是求封闭环或者组成环尺寸及其公差的问题当作求一个随机变量的统计问题进行处理

  图六 4.3 计算衔铁行程数据 对生成的尺寸数据来进行计算处理,得到衔铁行程数据。 选择计算-计算器后,弹出图五所示对话框,在表达式框中输入公式一所示公式, 点击确定后生成的数据见图六所示衔铁行程所在列。 4.4 对衔铁行程数据来进行处理,得出衔铁行程合格率 对计算得到的衔铁行程数据做处理,便可以得到装配后衔铁行程数据的基本信 息。 选择统计-质量工具-能力分析-正态,见图七,弹出能力分析(正态分布)对话 框,见图八,选择需要分析的数据,输入规格上下限后,确定后弹出数据分析结果。见 图九。根据结果计算后,衔铁行程合格率是 88.3%。

  摘 要 ································································································································· 2 引言 ··································································································································· 3 1 Monte Carlo 随机模拟方法简介 ··················································································· 3 2 应用实例 ························································································································ 4 3 准备工作 ························································································································ 4 3.1 绘制尺寸链,确定闭环的尺寸、公差及开环(衔铁行程)的上下限 ··················· 4 3.2 确定衔铁行程的函数 F (x ) ························································································· 4 4 minitab 操作实现 ··········································································································· 4 4.1 打开 minitab 软件,输入表头信息。········································································ 4 4.2 生成随机尺寸数据 ····································································································· 4 4.3 计算衔铁行程数据 ····································································································· 5 4.4 对衔铁行程数据来进行处理,得出衔铁行程合格率 ·················································· 5 4.5 更改尺寸公差或 sigma_level,得到不同情况下的合格率 ······································ 6 4.6 命令操作实现 ············································································································· 6 5 结论: ···························································································································· 7 6 结束语 ···························································································································· 7 参考文献 ··························································································································· 7

  摘 要 本文介绍了一种借助 minitab 软件完成尺寸链及公差计算的方法, 与传统方法相比, 其结果合理,计算工作量适中,是值得推广的一种方法。 关键词 Monte Carlo 模拟法 minitab 尺寸链 公差分析

  引言 尺寸链计算的重要性不言而语,尺寸链的计算方法主要有两种方法,一种是极大极 小值法,该方法简单,适合手工计算,但是过于考虑极限情况,大大加大了对于各相关 尺寸公差的要求,会造成公差的冗余,提高了零件加工成本。另一方法是概率统计法, 但是该方法计算过程复杂,计算工作量大,不适用于手工计算[1]。在宏发继电器设计过 程中,目前主要应用方法一。本文中采用基于 Monte Carlo 计算机随机模拟方法进行尺 寸链及公差计算,目前该方法在尺寸链及公差计算得到了较为广泛的应用,是目前应用 广泛的一种方法。 在文中详细介绍了基于 Monte Carlo 计算机随机模拟方法利用 minitab 软件完成尺寸链计算的方法及过程,该方法简单实用,与实际情况应用较为符合。 1 Monte Carlo 随机模拟方法简介 蒙特卡罗方法(Monte Carlo method) ,也称统计模拟方法,是二十世纪四十年代 中期由于科学技术的发展和电子计算机的发明, 而被提出的一种以概率统计理论为指导 的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多 计算问题的方法[2]。 蒙特卡罗模拟法的基本思想是当所求问题的解是某个事件的概率, 或者是某个随机 变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该 事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的 解[3]。 用蒙特卡罗模拟法进行装配尺寸链公差分析, 就是求封闭环或者组成环尺寸及其公 差的问题,当作求一个随机变量的统计问题做处理。对于任意的装配尺寸链,当公差 函数、组成环和封闭环尺寸、公差及公布函数时,只要能够得到公布函数的随机抽样, 就可以通过蒙特卡罗模拟求解未知封闭环或组成环的尺寸及公差[3]。

  4.5 更改尺寸公差或 sigma_level,得到不同情况下的合格率 通过更改尺寸公差或 sigma_level,重复以上操作,能够获得不同情况下的衔铁行程合 格率。从而得到期望的合格率。 4.6 命令操作实现 在 minitab 软件中通过输入如下命令,便可实现上述操作,得到同样的结果。且通 过命令的方法更为快捷,可在命令行中直接更改有关数据,提高操作效率。


新闻推荐
Recommended News