极值法解算尺寸链的特点是: 简便、可靠,但当封闭环公差较小,组成环数目较多 时,分摊到各组成环的公差可能过小,从而造成加工困 难,制造成本增加,在此情况小,常采用概率法进行尺 寸链的计算。
1) 等公差原则 按等公差值分配的方法来分配封闭环的公差 时,各组成环的公差值取相同的平均公差值Tav:即 极值法 Tav=T0/(n-1)
这种方法计算最简单,但没考虑到各组成环加工的难 易、尺寸的大小,显然是不够合理的。
组成环又可分为增环和减环。 增环——若该环的变动引起封闭环的同向变动,则该环 为增环.即当该组成环尺寸增大(或减小)而其它组成 环不变时,封闭环也随之增大(或减小). 减环——若该环的变动引起封闭环的反向变动。则该环 为减环。即当该组成环尺寸增大(或减小)而其他组成 环不变时,封闭环的尺寸却随之减小(或增大)。
—— 确定尺寸链中封闭环(因变量) 和组成环(自变量)的函数关系式,其一般 形式为:
如图所示的车床主轴轴线与尾架轴线是装配技术方面的要求,为封闭环。组成环为尾架顶 尖轴线、与床面相连的底板的厚度 A2、床面到主轴轴线为减环。
尺寸链就是在零件加工或 机器装配过程中,由相互 联系且按一定顺序连接的 封闭尺寸组合。
图示工件如先以A面定位加工C面,得尺寸A1然后再以 A面定位用调整法加工台阶面B,得尺寸A2,要求保证B面 与C面间尺寸A0;A1、A2和A0这三个尺寸构成了一个封闭 尺寸组,就成了一个尺寸链。
当计算出各环的公差、平均尺寸、平均偏差之后,应按将该环的公 差对平均尺寸按双向对称分布,即写成 T ( A ) ,然后将之改写成上下 A 2 偏差的形式,即
的公差取相同的公差等级,公差值的大小依据基本尺寸的大 小,由标准公差数值表中查得。 3) 按实际可行性分配原则 按详细情况来分配封闭环的公差时,第一步先按等公差值或 等公差级的分配原则求出各组成环所能分配到的公差,第二 步再从加工的难易程度和设计的基本要求等详细情况调整各组成环
在尺寸链图中用首尾相接的单向 箭头顺序表示各尺寸环,其中与 封闭环箭头方向相反者为增环, 与封闭环箭头方向相同者为减环。
1)工艺尺寸链——全部组成环为 同一零件工艺尺寸所形成的尺寸链。 2)装配尺寸链——全部组成环为 不同零件设计尺寸所形成的尺寸链。 3)零件尺寸链——全部组成环为同 一零件设计尺寸所形成的尺寸链。 4)设计尺寸链——装配尺寸链与零 件尺寸链,统称为设计尺寸链。
封闭环的最小极限尺寸A0min等于增环的最小极限尺寸 之和减去减环的最大极限尺寸之和,即
(3) 各环上、下偏差之间的关系 封闭环的上偏差ES(A0)等于增环的上偏差之和减去减 环的下偏差之和,即
1、加工顺序或装配顺序确定后才 能确定封闭环。 2、封闭环的基本属性为“派生” ,表现为尺寸间接获得。 1、设计尺寸往往是封闭环。 2、加工余量往往是封闭环(靠火 花磨除外)。
1) 长度尺寸链—全部环为长度的尺寸链 2) 角度尺寸链—全部环为角度的尺寸链
3)直线尺寸链—— 全部组成环平行于封闭 环的尺寸链。 4)平面尺寸链—— 全部组成环位于一个或 几个平行平面内,但某些组成环不平行于 封闭环的尺寸链。 5) 空间尺寸链——组成环位于几个不平行 平面内的尺寸链。
2. 概率法特点:以概率论理论为基础,计算科学、复杂, 经济效果好,用于环数较多的大批大量生产中。
(1) 各环公差之间的关系 (2) 各 环 平 均 尺 寸 之 间 的 关 系 (3)各环平均偏差之间的关系
(1)正计算——已知各组成环,求封闭环。正计算大多数都用在 验算所设计的产品能否满足性能要求及零件加工后能否满足零 件的技术方面的要求。 (2)反计算——已知封闭环,求各组成环。反计算大多数都用在 产品设计、加工和装配工艺计算等方面,在实际在做的工作中经常碰 到。反计算的解不是唯一的。如何将封闭环的公差正确地分配 给各组成环,这里有一个优化的问题。 (3)中间计算——已知封闭环和部分所组成环的基本尺寸及公 差,求其余的一个或几个组成环基本尺寸及公差(或偏差)。 中间计算可用于设计计算与工艺计算,也可用于验算。
(1) 极值法各环基本尺寸之间的关系 封闭环的基本尺寸A0等于增环的基本尺寸之和减去减环的 基本尺寸之和,即
(2)各环极限尺寸之间的关系 封闭环的最大极限尺寸A0max 等于增环的最大极限尺寸之和减去 减环的最小极限尺寸之和,即